Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-20234527

ABSTRACT

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Subject(s)
Anti-Infective Agents , COVID-19 , Disinfectants , Melaleuca , Tea Tree Oil , Cellulose/chemistry , Emulsions/chemistry , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Water/chemistry
2.
Microb Cell Fact ; 22(1): 103, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2321686

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS: We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS: In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.


Subject(s)
Cellulase , Single-Domain Antibodies , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Glucose/metabolism , Single-Domain Antibodies/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cellulose/metabolism , Trichoderma/metabolism
3.
ACS Appl Mater Interfaces ; 15(17): 20638-20648, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2277202

ABSTRACT

In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Cellulose/chemistry , Porosity , Surface Properties , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Water/chemistry
4.
Int J Biol Macromol ; 236: 123951, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2276638

ABSTRACT

Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.


Subject(s)
COVID-19 , Chitosan , Humans , COVID-19/prevention & control , Antiviral Agents/pharmacology , Pandemics/prevention & control , Cellulose/pharmacology , Masks
5.
Talanta ; 251: 123783, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2049948

ABSTRACT

The current approaches of diagnostic platforms for detecting SARS-CoV-2 infections mostly relied on adapting the existing technology. In this work, a simple and low-cost electrochemical sensing platform for detecting SAR-CoV-2 antigen was established. The proposed sensor combined the innovative disposable paper-based immunosensor and cost-effective plant-based anti-SARS-CoV-2 monoclonal antibody CR3022, expressed in Nicotiana benthamiana. The cellulose nanocrystal was modified on screen-printed graphene electrode to provide the abundant COOH functional groups on electrode surface, leading to the high ability for antibody immobilization. The quantification of the presence receptor binding domain (RBD) spike protein of SARS-CoV-2 was performed using differential pulse voltammetry by monitoring the changing current of [Fe(CN)6]3-/4- redox solution. The current change of [Fe(CN)6]3-/4- before and after the presence of target RBD could be clearly distinguished, providing a linear relationship with RBD concentration in the range from 0.1 pg/mL to 500 ng/mL with the minimum limit of detection of 2.0 fg/mL. The proposed platform was successfully applied to detect RBD in nasopharyngeal swab samples with satisfactory results. Furthermore, the paper-based immunosensor was extended to quantify the RBD level in spiked saliva samples, demonstrating the broadly applicability of this system. This electrochemical paper-based immunosensor has the potential to be employed as a point-of-care testing for COVID-19 diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Antibodies, Viral , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Cellulose , Electrochemical Techniques/methods , Graphite/chemistry , Humans , Immunoassay/methods , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110188

ABSTRACT

With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.


Subject(s)
Copper , Metal Nanoparticles , Humans , Copper/chemistry , Cellulose/pharmacology , Antifungal Agents , Staphylococcus aureus , Escherichia coli , Antiviral Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Klebsiella pneumoniae , Oxides
7.
Transbound Emerg Dis ; 69(5): e2111-e2121, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053006

ABSTRACT

Viral respiratory diseases, such as avian influenza, Newcastle disease, infectious bronchitis and infectious laryngotracheitis, have considerable negative economic implications for poultry. Ensuring the virus-free status of premises by environmental sampling after cleaning and disinfection is essential for lifting a quarantine and/or safely restocking the premises following an outbreak. The objectives of this study were to identify optimal sample collection devices and to determine the locations in poultry housing which are best for poultry respiratory virus sample collection. Chickens exposed to infectious bronchitis virus, which was used as a representative virus for enveloped poultry respiratory viruses, were housed in floor-pens in either a curtain-sided wood framed house or a cement block house. Foam swabs, cellulose sponges, polyester swabs, dry cotton gauze and pre-moistened cotton gauze were evaluated for comparative efficiency in recovering viral RNA. Cotton gauze pre-moistened with the viral transport media had the highest sensitivity among the devices (wood-framed house: 78% positive, geometric mean titre [GMT] of 2.6 log10 50% egg infectious doses [EID50 ] equivalents/ml; cement block houses: 55% positive, GMT of 1.7 log10 EID50 equivalents/ml). Targeting virus deposition sites is also crucial for efficient virus elimination procedures and subsequent testing; therefore, 10 locations within the houses were compared for virus detection. In both housing types, the highest viral RNA loads were recovered from the tops of drinker lines within the pen. Places the chickens could contact directly (e.g., feeder rim) or were contacted by caretaker feet (hallway floor) also yielded higher levels of viral RNA more consistently. These results will facilitate the establishment of efficient environmental sampling procedures for respiratory viruses of poultry.


Subject(s)
Influenza in Birds , Poultry Diseases , Animals , Cellulose , Chickens , Housing , Newcastle disease virus/genetics , Poultry , RNA, Viral
8.
Environ Sci Process Impacts ; 24(10): 1855-1866, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2036940

ABSTRACT

Disposable wipes and masks have come to be considered as underestimated sources of microfiber generation since the emergence of COVID-19. However, research into the creation of microfibers due to wiping with these non-woven products is scarce, and the potential effects of fabric properties on shedding behavior are unclear. This study investigated microfiber release from 7 wet wipes, 5 dry wipes, and 4 masks in response to the use of simulated daily wiping conditions on artificial skin. The dry wipes (77-568 p per sheet) shed more microfibers than the wet ones (21-190 p per sheet) after 2, 10, or 50 wiping cycles under a 9.8 N wiping force. In addition, an average of 56 microfibers could be released from per gram of wipe, and each square centimeter of wipe could release about 1.18 microfibers during wiping. Masks shed fewer microfibers than wipes due to the excellent shedding resistance of spunbond nonwoven fabrics and the strengthened mechanical properties granted by bonding points. Cellulose, polyethylene terephthalate (PET), and polypropylene (PP) were the major polymers in the microfibers shed by wipes, and the microfibers from masks were all PP. With regard to the influencing factors, the number of microfibers shed from wipes was positively associated with the number of wiping cycles (r = 0.983 and 0.960, p < 0.01) and wiping force (r = 0.980, p < 0.05), while it was negatively correlated with the moisture content (r = -0.992, p < 0.01). Interestingly, a stronger fiber entanglement degree in the wipes significantly improved the resistance to microfiber generation (r = -0.664, p < 0.05). The results highlighted for the first time that the bending coefficient (ß = -5.05; 95% CI: -7.71, -2.40; p = 0.002) and fiber extraction force (ß = -0.077; 95% CI: -0.123, -0.030; p = 0.005) significantly reduced the tendency for microfiber shedding. Although the number of microfibers shed from wiping was lower than those from domestic washing, there is still an urgent need to control the microfiber shedding tendencies of non-woven products through improving the manufacturing processes.


Subject(s)
COVID-19 , Polypropylenes , Humans , Polyethylene Terephthalates , Textiles , Cellulose
9.
Mikrochim Acta ; 189(10): 386, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2035078

ABSTRACT

A new detection strategy was developed to improve the sensitivity of a lateral flow immunoassay platform utilizing a delayed hydrophobic barrier fabricated with trimethylsilyl cellulose (TMSC). The SARS-CoV-2 spike receptor-binding domain (SARS-CoV-2 SP RBD) antigen was chosen as a model analyte to demonstrate the superior detectability of this scheme. The novel device consists of 2 separate layers, so-called delayed lateral flow immunoassay (d-LFIA). The upper layer is intended for the analyte or sample flow path, where the test solution flows freely straight to the detection zone to bind with the primary antibody. The lower layer, located just underneath, is designed for the SARS-CoV-2 spike receptor-binding domain-conjugated gold nanoparticles (SARS-CoV-2 SP RBD-AuNPs) used for producing a colorimetric signal. This layer is fabricated with a TMSC barrier to time-delay the movement of SARS-CoV-2 SP RBD-AuNPs, thus allowing the antigen to bind with the primary antibody more efficiently. This platform exhibited a 2.6-fold enhancement in the sensitivity and 9.1-fold improvement in the limit of detection (LOD) as compared with the conventional LFIA. In addition, this d-LFIA device was satisfactorily applied to accurate screening of COVID-19 patients.


Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies , COVID-19/diagnosis , Cellulose , Gold , Humans , Immunoassay , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
10.
J Proteome Res ; 21(8): 2055-2062, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1921546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Cellulose/analogs & derivatives , Esters , Humans , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
11.
J Adv Res ; 39: 147-156, 2022 07.
Article in English | MEDLINE | ID: covidwho-1921031

ABSTRACT

INTRODUCTION: Face masks are regarded as effective Personal Protective Equipment (PPE) during the COVID-19 pandemic. However, the dominant polypropylene (PP)-based masks are devoid of antiviral/antibacterial activities and create enormous environmental burdens after disposal. OBJECTIVES: Here we report a facile and potentially scalable method to fabricate biodegradable, breathable, and biocidal cellulose nonwovens (BCNWs) to address both environmental and hygienic problems of commercially available face masks. METHODS: TEMPO-oxidized cellulose nonwovens are rendered antiviral/antibacterial via covalent bonding with disinfecting polyhexamethylene guanidine or neomycin sulfate through carbodiimide coupling chemistry. RESULTS: The obtained results showed that the BCNWs have virucidal rate of >99.14%, bactericidal efficiency of >99.51%, no leaching-out effect, and excellent air permeability of >1111.5 mm s-1. More importantly, the as-prepared BCNWs can inactivate SARS-CoV-2 instantly. CONCLUSIONS: This strategy provides a new platform for the green fabrication of multifunctional cellulose nonwovens as scalable bio-protective layers with superior performance for various PPE in fighting COVID-19 or future pandemics. Additionally, replacing the non-biodegradable non-antimicrobial PP-based masks with the cellulose-based masks can reduce the plastic wastes and lower the greenhouse gas production from the incineration of disposed masks.


Subject(s)
COVID-19 , Personal Protective Equipment , Anti-Bacterial Agents/pharmacology , Antiviral Agents , COVID-19/prevention & control , Cellulose , Humans , Pandemics/prevention & control , SARS-CoV-2
12.
Carbohydr Polym ; 283: 119160, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1654130

ABSTRACT

With the forthcoming of the post-COVID-19 and the ageing era, the novel biomaterials and bioelectronic devices are attracting more and more attention and favor. Cellulose as one of the most globe-abundant natural macromolecules has multiple merits of biocompatibility, processability, carbon neutral feature and mechanical designability. Due to its progressive advancement of multi-scale design from macro to micro followed by new cognitions, cellulose shows a promising application prospect in developing bio-functional materials. In this review, we briefly discuss the role of cellulose from the "top-down" perspective of macro-scale fibers, micro-scale nanofibers, and molecular-scale macromolecular chains for the design of advanced cellulose-based functional materials. The focus then turns to the construction and development of emerging cellulose-based flexible bioelectronic devices including biosensors, biomimetic electronic skins, and biological detection devices. Finally, the dilemma and challenge of cellulose-based bioelectronic materials and their application prospects in basic biology and medical care have been prospected.


Subject(s)
Biocompatible Materials , Biosensing Techniques , Cellulose , Wearable Electronic Devices , Nanofibers/chemistry
13.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1613825

ABSTRACT

(1R,5S)-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, available by an efficient catalytic pyrolysis of cellulose, has been applied as a chiral building block in the synthesis of seven new nucleoside analogues, with structural modifications on the nucleobase moiety and on the carboxyl- derived unit. The inverted configuration by Mitsunobu reaction used in their synthesis was verified by 2D-NOESY correlations, supported by the optimized structure employing the DFT methods. An in silico screening of these compounds as inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase has been carried out in comparison with both remdesivir, a mono-phosphoramidate prodrug recently approved for COVID-19 treatment, and its ribonucleoside metabolite GS-441524. Drug-likeness prediction and data by docking calculation indicated compound 6 [=(3S,5S)-methyl 5-(hydroxymethyl)-3-(6-(4-methylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3-carboxylate] as the best candidate. Furthermore, molecular dynamics simulation showed a stable interaction of structure 6 in RNA-dependent RNA polymerase (RdRp) complex and a lower average atomic fluctuation than GS-441524, suggesting a well accommodation in the RdRp binding pocket.


Subject(s)
Antiviral Agents/chemical synthesis , Cellulose/chemistry , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Nucleosides/chemical synthesis , SARS-CoV-2/enzymology , Adenosine/analogs & derivatives , Adenosine/chemistry , Adenosine/pharmacokinetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacokinetics , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Computational Biology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleosides/chemistry , Nucleosides/pharmacokinetics , Pyrolysis , SARS-CoV-2/drug effects
14.
Appl Environ Microbiol ; 88(5): e0230321, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1608119

ABSTRACT

The highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 253 million people, claiming ∼5.1 million lives to date. Although mandatory quarantines, lockdowns, and vaccinations help curb viral transmission, there is a pressing need for cost-effective systems to mitigate the viral spread. Here, we present a generic strategy for capturing SARS-CoV-2 through functionalized cellulose materials. Specifically, we developed a bifunctional fusion protein consisting of a cellulose-binding domain and a nanobody (Nb) targeting the receptor-binding domain of SARS-CoV-2. The immobilization of the fusion proteins on cellulose substrates enhanced the capture efficiency of Nbs against SARS-CoV-2 pseudoviruses of the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography with highly porous cellulose to capture viruses from complex fluids in a continuous fashion. By capturing and containing viruses through the Nb-functionalized cellulose, our work may find utilities in virus sampling and filtration through the development of paper-based diagnostics, environmental tracking of viral spread, and reducing the viral load from infected individuals. IMPORTANCE The ongoing efforts to address the COVID-19 pandemic center around the development of diagnostics, preventative measures, and therapeutic strategies. In comparison to existing work, we have provided a complementary strategy to capture SARS-CoV-2 by functionalized cellulose materials through paper-based diagnostics as well as virus filtration in perishable samples. Specifically, we developed a bifunctional fusion protein consisting of both a cellulose-binding domain and a nanobody specific for the receptor-binding domain of SARS-CoV-2. As a proof of concept, the fusion protein-coated cellulose substrates exhibited enhanced capture efficiency against SARS-CoV-2 pseudovirus of both the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography for binding viruses from complex biological fluids in a highly continuous and cost-effective manner. Such antigen-specific capture can potentially immobilize viruses of interest for viral detection and removal, which contrasts with the common size- or affinity-based filtration devices that bind a broad range of bacteria, viruses, fungi, and cytokines present in blood (https://clinicaltrials.gov/ct2/show/NCT04413955). Additionally, since our work focuses on capturing and concentrating viruses from surfaces and fluids as a means to improve detection, it can serve as an "add-on" technology to complement existing viral detection methods, many of which have been largely focusing on improving intrinsic sensitivities.


Subject(s)
COVID-19 , SARS-CoV-2 , Cellulose , Communicable Disease Control , Humans , Pandemics , SARS-CoV-2/genetics
15.
J Hazard Mater ; 424(Pt A): 127391, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1446842

ABSTRACT

Personal protective equipment (PPE) such as face masks is vital in battling the COVID-19 crisis, but the dominant polypropylene-based PPE are lack of antiviral/antibacterial activities and environmental friendliness, and have hazardous impact on the soil and aquatic ecosystems. The work presented herein focused on developing biodegradable, antiviral, and antibacterial cellulose nonwovens (AVAB-CNWs) as a multi-functional bioprotective layer for better protection against coronavirus SARS-CoV-2 and addressing environmental concerns raised by the piling of COVID-19 related wastes. Both guanidine-based polymer and neomycin sulfate (NEO) were reactive-modified and covalently grafted onto the surface of cellulose nonwovens, thereby conferring outstanding antiviral and antibacterial activities to the nonwovens without deteriorating the microstructure and biodegradability. Through adjusting the grafting amount of active components and selecting appropriate reagents for pretreatment, the antimicrobial activity and hydrophobicity for self-cleaning of the nonwovens can be tuned. More importantly, we demonstrated for the first time that such multi-functional nonwovens are capable of inactivating SARS-CoV-2 instantly, leading to high virucidal activity (> 99.35%), which is unachievable by conventional masks used nowadays. Meanwhile, the robust breathability and biodegradability of AVAB-CNWs were well maintained. The applications of the as-prepared nonwovens as high-performance textile can be readily extended to other areas in the fight against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Cellulose , Ecosystem , Humans , Microplastics , Plastics , SARS-CoV-2
16.
ACS Appl Mater Interfaces ; 13(33): 38990-39002, 2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1351922

ABSTRACT

The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10 min, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 and 80 pM limits of detection in 1× phosphate-buffered saline (mock swab) and saliva matrices spiked with cell-culture-generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way toward the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , Nucleocapsid Proteins/analysis , SARS-CoV-2/chemistry , Biomarkers/analysis , Biosensing Techniques , COVID-19/prevention & control , Cellulose/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Dyes/chemistry , Humans , Microfluidic Analytical Techniques/methods , Peptide Library , Protein Binding
17.
Biomolecules ; 10(10)2020 09 27.
Article in English | MEDLINE | ID: covidwho-1295752

ABSTRACT

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Subject(s)
Burns/therapy , Exosomes/transplantation , Hydrogels/therapeutic use , Wound Healing/genetics , Burns/pathology , Cell- and Tissue-Based Therapy/trends , Cellulose/therapeutic use , Exosomes/genetics , Humans , Hydrogels/chemistry , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Skin/growth & development , Skin/injuries , Skin/metabolism
18.
ACS Nano ; 15(7): 11992-12005, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1281671

ABSTRACT

Personal protective equipment (PPE) has been highly recommended by the U.S. Centers for Disease Control and Prevention for self-protection during the disastrous SARS-CoV-2 (COVID-19) pandemic. Nevertheless, massive utilization of PPE encounters significant challenges in recycling and sterilizing the used masks. To tackle the associated plastic pollution of used masks, in this work, we designed a reusable, biodegradable, and antibacterial mask. The mask was fabricated by the electrospinning of polyvinyl alcohol (PVA), poly(ethylene oxide) (PEO), and cellulose nanofiber (CNF), followed by esterification and the deposition of a nitrogen-doped TiO2 (N-TiO2) and TiO2 mixture. The fabricated mask containing photocatalytic N-TiO2/TiO2 reached 100% bacteria disinfection under either 0.1 sun simulation (200-2500 nm, 106 W m-2) or natural sunlight for only 10 min. Thus, the used mask can be rejuvenated through light irradiation and reused, which represents one of the handiest technologies for handling used masks. Furthermore, intermolecular interactions between PVA, PEO, and CNF enhanced the electrospinnability and mechanical performance of the resultant mask, which possesses a 10-fold elastic modulus and 2-fold tensile strength higher than a commercial single-use mask. The porous structures of electrospun nanofibers along with strong electrostatic attraction enabled breathability (83.4 L min-1 of air flow rate) and superior particle filterability (98.7%). The prepared mask also had excellent cycling performance, wearability, and stable filtration efficiency even after 120 min wearing. Therefore, this mask could be a great alternative to current masks to address the urgent need for a sustainable, reusable, environmentally friendly, and efficient PPE under the ongoing COVID-19 contagion.


Subject(s)
COVID-19 , United States , Humans , COVID-19/prevention & control , Masks , SARS-CoV-2 , Rejuvenation , Polyvinyl Alcohol , Cellulose
19.
Int J Biol Macromol ; 182: 1769-1784, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1243011

ABSTRACT

This work attempts to resolve one of the key issues related to the design and development of sustained-release spherule of aspirin for oral formulations, tailored to treat COVID-19. For that, in the Design of Experiments (DOE) an arbitrary interface, "coating efficiency" (CE) is introduced and scaled the cumulative percentage coating (CPC) to get predictable control over drug release (DR). Subsequently, the granules containing ASP are converted to spherules and then to Ethyl cellulose (EC) Coated spherules (CS) by a novel bed coating during the rolling (BCDR) process. Among spherules, one with 0.35 mm than 0.71 mm shows required properties. The CS has a low 1200 angle by Optical Microscopy (OM), smooth surface without cracks by scanning electron microscopy (SEM), and better flow properties (Angle of repose 29.69 ± 0.780, Carr's index 6.73 ± 2.24%, Hausner's Ratio 1.07 ± 0.03) than granules and spherules. Once certain structure-dependent control over release is attained (EC coated spherules shows 10% reduction in burst release (BR) than uncoated spherules showing a release of 80-91%) the predictability is achieved and Design of space (DOS) by DOE (CE-70.14%and CPC-200% and DR-61.54%) is established. The results of DOE to experimentally validated results were within 20% deviation. The aspirin is changing its crystal structure by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) from Form-I to Form-II showing polymorphism inside the drug reservoir with respect to the process. This CE and CPC approach in DOE can be used for delivery system design of other labile drugs similar to aspirin in emergency situations.


Subject(s)
Aspirin , COVID-19 Drug Treatment , Cellulose/analogs & derivatives , SARS-CoV-2 , Aspirin/chemistry , Aspirin/pharmacokinetics , Cellulose/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Compounding , Drug Liberation , Humans
20.
Int J Biol Macromol ; 181: 990-1002, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1188608

ABSTRACT

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). We succeeded in preparing disinfectant cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles to be used for prevention of contamination and transmission of several pathogenic viruses and microbes to human in critical areas such as hospitals and healthcare centers especially coronavirus. In this work, the antimicrobial and antiviral activities of silver nanoparticles (AgNPs) prepared with four different techniques were investigated for the utilization as a disinfectant for cellulose-based wipes. These four methods are namely; 1) trisodium citrate with cotton yarn as a reducing agent, 2) preparing AgNP's using aqueous solution of PVA in the presence of glucose, 3) trisodium citrate with cotton fabric as a reducing agent, and 4) photochemical reaction of polyacrylic acid and silver nitrate solution. Polyester/viscose blended spunlace nonwoven fabrics as cellulose based fabrics were treated with the prepared silver nanoparticles to be used as surfaces disinfection wipes. The properties of the nonwoven fabrics were examined including thickness, tensile strength in dry and wet conditions in both machine direction (MD) and cross-machine direction (CMD), bursting strength, air permeability, water permeability and surface wettability. Characterization of the AgNPs was carried out in terms of UV-VIS spectroscopy, TEM, SEM, and Zeta potential analysis. The assessment of AgNPs active solutions for antimicrobial and antiviral activities was evaluated. The results obtained from the analyses of the AgNPs samples prepared with different techniques showed good uniformity and stability of the particles, as well uniform coating of the AgNPs on the fibers. Additionally, there is a significant effect of the AgNPs preparation method on their disinfectant performance that proved its effectiveness against coronavirus (MERS-CoV), S. aureus and B. subtilis as Gram-positive bacteria, E. coli and P. mirabilis as Gram-negative bacteria, A. niger and C. albicans fungi.


Subject(s)
COVID-19/prevention & control , Cellulose/chemistry , Coronavirus/drug effects , Disinfectants/chemistry , Metal Nanoparticles/chemistry , SARS-CoV-2/drug effects , Silver/chemistry , Acrylic Resins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Citrates/chemistry , Cotton Fiber , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Green Chemistry Technology , Microbial Sensitivity Tests , Silver Nitrate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL